Gender And Race Differences in Aging-Related Alteration In Myocardial Systolic Function Assessed by 2D Speckle Tracking Echocardiography Over A 20 Year Follow-Up: The CARDIA Study.

ARTICLE in JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY · MARCH 2015

Impact Factor: 15.34 · DOI: 10.1016/S0735-1097(15)61206-2

14 AUTHORS, INCLUDING:

Bharath Ambale-Venkatesh
Johns Hopkins University
56 PUBLICATIONS 73 CITATIONS

Anderson Da Costa Armstrong
Universidade Federal do Vale do São Fra...
31 PUBLICATIONS 97 CITATIONS

Gisela Teixidó
University Hospital Vall d'Hebron
31 PUBLICATIONS 27 CITATIONS

Ola Gjesdal
Oslo University Hospital, Rikshospitalet a...
40 PUBLICATIONS 739 CITATIONS

Available from: Chike Nwabuo
Retrieved on: 17 July 2015
Non Invasive Imaging (Echocardiography, Nuclear, PET, MR and CT)

GENDER AND RACE DIFFERENCES IN AGING-RELATED ALTERATION IN MYOCARDIAL SYSTOLIC FUNCTION ASSESSED BY 2D SPECKLE TRACKING ECHOCARDIOGRAPHY OVER A 20 YEAR FOLLOW-UP: THE CARDIA STUDY

Poster Contributions
Poster Hall B1
Sunday, March 15, 2015, 9:45 a.m.-10:30 a.m.

Session Title: Non Invasive Imaging: Strain Imaging by Echocardiography
Abstract Category: 17. Non Invasive Imaging: Echo
Presentation Number: 1174-019

Authors: Chike Nwabuo, Eui-Young Choi, Bharath Ambale Venkatesh, Satoru Kishi, Andre L. Almeida, Henrique T. Moreira, Ravi Sharma, Anderson C. Armstrong, Gisela Teixido, Ola Gjesdal, Cora Lewis, Stephen Sidney, Samuel Gidding, Joao Lima, Johns Hopkins University, Baltimore, MD, USA

Background: To evaluate gender and race differences in subclinical left ventricle (LV) systolic function in young adulthood and middle age. We assessed circumferential peak strain in a prospective cohort with echocardiograms obtained 20 years apart.

Methods: Included were 1,312 Coronary Artery Risk Development in Young Adults (CARDIA) African-American and Caucasian participants with 2D Speckle Tracking Echocardiography measurements at Year-5 and Year-25. Circumferential peak strain was acquired using Acuson (Siemens) and Artida (Toshiba) at Year-5 and Year-25 respectively, with parasternal short axis LV mid-wall layer analyzed with 2D wall motion tracking software. Year-5 strain measurements were calibrated to account for vendor differences. Gender and race differences were assessed by comparison of means and multivariable linear regression models, adjusted for baseline strain, demographics, traditional cardiovascular risk factors, change in risk factor and chronic risk exposure as appropriate. More negative values of circumferential strain indicate greater circumferential shortening or better function.

Results: Age of CARDIA participants was 29.7 ± 3.6 years at Year-5, 59.5% were female and 52.8% Caucasian. Circumferential shortening decreased overall from -16.6 ± 3.1% to -15.4 ± 2.8%, p<0.001 over 20 years. In multivariable risk adjusted models, women had greater circumferential shortening than men at Year-25 (-15.7% SE 0.10) vs (-15.0% SE 0.12) p<0.001 and Year-5 (-16.9% SE 0.11) vs (-16.0% SE 0.13) p<0.001, but there were no gender differences in 20 year change in circumferential shortening. Caucasians had greater circumferential shortening compared to African-Americans at Year-25 (-15.7% SE 0.11) vs (-15.0% SE 0.12) p<0.001 but not Year-5 (-16.6% SE 0.12) vs (-16.5% SE 0.13) p=0.59. Caucasian race (β -0.81, SE 0.20, p<0.001) was associated with less decrease in shortening over 20 years than African-American race.

Conclusion: Women have better circumferential shortening than men in both young adulthood and middle age. Caucasians have better circumferential shortening than African-Americans at middle age because of a less steep decline in shortening over 20 years.